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Summary

 

• To further characterize the effects of mycorrhizal infection and soil phosphorus (P)
availability on plant fitness, this study examined their effects on the female and male
functions, as well as vegetative growth of tomato (

 

Lycopersicon esculentum

 

).
• Two cultivars of tomato were grown in a glasshouse under three treatment com-
binations: nonmycorrhizal, low P (NMPO); nonmycorrhizal, high P (NMP3); and
mycorrhizal, low P (MPO).
• Mycorrhizal infection and high soil P conditions improved several vegetative (leaf
area, days until first flower and leaf P concentration) and reproductive traits (total
flower production, fruit mass, seed number and pollen production per plant, and
mean pollen production per flower). In general, mycorrhizal and P responses were
greater for reproductive traits than vegetative traits. In one cultivar, these responses
were greater for the male function than the female function.
• Thus, mycorrhizal infection and high soil P conditions enhanced fitness through
both the female and male functions. Similar trends were usually observed in the
NMP3 and MPO treatments, suggesting that mycorrhizal effects were largely the
result of improved P acquisition.
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Introduction

 

Despite the large body of research on arbuscular mycorrhizal
(AM) effects on vegetative growth, relatively little attention
has been given to its effects on plant reproduction, especially
the male function. Because most plants are hermaphrodites
(Charnov, 1982), contributing genes to the next generation
through both the male and female functions, estimates of
reproductive success through the male function are just as
important as estimates of success through the female function.
Several studies have demonstrated that the male and female
functions do not always respond in a similar manner
(Horovitz & Harding, 1972; Bertin, 1982). Thus, it cannot
be assumed that reproduction will show the same level of
response to mycorrhizal infection and high soil P conditions

as vegetative growth, or that the male and female functions of
reproduction will respond in similarly.

Because reproductive output is often highly correlated
with plant size and nutrient status (Harper & White, 1974;
Solbrig, 1981), it is not surprising that mycorrhizal plants
usually produce more seeds and fruit than nonmycorrhizal
plants ( Jensen, 1982, 1983; Schenck & Smith, 1982; Dodd

 

et al.

 

, 1983; Koide 

 

et al.

 

, 1988; Bryla & Koide, 1990a;
Carey 

 

et al.

 

, 1992; Stanley 

 

et al.

 

, 1993; Vejsadova 

 

et al.

 

, 1993;
Bethlenfalvay 

 

et al.

 

, 1994, 1997; Lu & Koide, 1994;
Subramanian & Charest, 1997). Furthermore, mycorrhizal
infection can improve seed quality (seed size and P status)
in addition to seed quantity (Koide 

 

et al.

 

, 1988; Bryla &
Koide, 1990a; Lu & Koide, 1991; Koide & Lu, 1992; Lu,
1993; Stanley 

 

et al.

 

, 1993).
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Beyond seed and fruit production, relatively little attention
has been given to the effects of mycorrhizal infection on other
aspects of plant reproduction. Mycorrhizal infection reduced
the time until first flower in tomato (

 

Lycopersicon esculentum

 

)
and 

 

Abutilon theophrasti

 

 (Bryla & Koide, 1990a; Lu & Koide,
1994). In addition, mycorrhizal infection increased flower
bud production in pepper (Dodd 

 

et al.

 

, 1983) and flower pro-
duction in soybean (

 

Glycine max

 

), tomato, and 

 

A. theophrasti

 

(Schenk & Smith 1982; Bryla & Koide, 1990a; Lewis &
Koide, 1990; Lu & Koide, 1994). Mycorrhizal infection also
increased the percentage of flowers producing fruits in tomato
and 

 

A. theophrasti

 

 (Bryla & Koide, 1990a; Lu & Koide,
1994).

Since both seeds and pollen depend on the sporophyte
for provisioning of nutrients, it is reasonable to expect that
mycorrhizal infection and high soil P conditions could improve
the male function of reproduction as well as the female func-
tion. Past studies have found a positive relationship between
environmental factors that affect resource availability (e.g. soil
fertility and leaf herbivory) and total pollen production, pol-
len production per flower, and pollen grain size (Vasek 

 

et al.

 

,
1987; Devlin, 1989; Young & Stanton, 1990; Stephenson

 

et al.

 

, 1992; Lau & Stephenson, 1993, 1994; Stephenson

 

et al.

 

, 1994; Quesada 

 

et al.

 

, 1995; Johannsson & Stephenson,
1998; Stephenson 

 

et al.

 

, 1998). Furthermore, environmental
factors can affect the chemical composition of pollen (Stanley
& Linskens, 1974; Baker & Baker, 1979; van Herpen &
Linskens, 1981; Lau & Stephenson, 1994; Stephenson 

 

et al.

 

,
1998). For example, high soil P conditions in the field had
an overall positive effect on the male function (staminate
flower production, pollen production per flower, pollen grain
size, and pollen P concentration) in 

 

Cucurbita pepo

 

 (Lau &
Stephenson, 1994). In a preliminary glasshouse study with

 

C. pepo

 

, mycorrhizal plants produced marginally more pollen
grains per staminate flower and significantly larger pollen
grains than nonmycorrhizal plants, with these differences
increasing over an 8-wk period (Lau 

 

et al.

 

, 1995). In another
study with 

 

C. pepo

 

 grown in the field, pollen from mycorrhizal
plants showed faster 

 

in vitro

 

 pollen tube growth rates than
pollen from nonmycorrhizal plants (Stephenson 

 

et al.

 

, 1998).
Recent studies with other species have shown further benefi-
cial effects of mycorrhizal infection on pollen production
(Pendleton, 2000; Philip 

 

et al.

 

, 2001; Poulton 

 

et al.

 

, 2001b)
and pollen performance (Poulton 

 

et al.

 

, 2001a,b).
In the study reported here, two tomato cultivars were

grown in a glasshouse under three treatment combinations:
nonmycorrhizal, low P (NMPO); nonmycorrhizal, high P
(NMP3); and mycorrhizal, low P (MPO). The effects of myc-
orrhizal infection and soil P availability were determined for
both vegetative (leaf area, days until first flower – a measure
of pre-reproductive growth rate – leaf P concentration, and
final leaf biomass) and reproductive traits (total flower pro-
duction per plant), including separate measures of the female
(total fruit mass per plant, fruit abortion, fruit P concentration,

mean seed number per fruit and total seed number per plant),
and male function (mean pollen production per flower, total
pollen production per plant and pollen grain size). Although
individual responses to mycorrhizal infection and soil P
availability are common in the literature, few studies compare
vegetative, female, and male responses within a single study,
as described here.

 

Materials and Methods

 

In a glasshouse study, two cultivars of tomato (

 

Lycopersicon
esculentum

 

 Mill.), ‘VF36’ and ‘VFNT Cherry’, were used to
examine the effects of mycorrhizal infection and soil P
availability on vegetative growth and the female and male
functions of reproduction. Both cultivars were obtained from
the Tomato Genetics Research Center at the University
of California, Davis, CA, USA. ‘VF36’ produces two to
four flowers per inflorescence and large fruit (mean fruit
mass = 6.2 g); ‘VFNT Cherry’ produces six to eight flowers
per inflorescence and small fruit (mean fruit mass = 0.7 g).
Both cultivars are self-compatible and show indeterminate
growth and reproduction. These cultivars were selected
because both have mutations for stem color that can be used
to determine paternity in pollen mixture studies (Poulton

 

et al.

 

, 2001a).
Soil was collected from a low P (14 ppm Olsen extractable

P) field at the Pennsylvania State University Agricultural
Experiment Station at Rock Springs, PA, USA. Indigenous
mycorrhizal fungi were destroyed by autoclaving the air-dried
soil at 105

 

°

 

C for 90 min Then the soil was stored for 2 wk
to avoid the potentially phytotoxic effects of autoclaving (Rovira
& Bowen, 1966). In order to improve drainage, the field soil
was mixed in a 1 : 3 ratio with sterile medium-grade sand.

On 4 June 1997, ‘VF36’ and ‘VFNT Cherry’ tomato seeds
were planted in trays containing 50% PGX growing mix
(Premier, Riviere-du-Loup, Quebec, Canada), 40% Perlite,
and 10% whole-soil inoculum (approx. 75 spores of 

 

Glomus
etunicatum

 

 Becker and Gerd. per ml of inoculum) for mycor-
rhizal seedlings, or 10% autoclaved low P field soil (same soil
used to produce inoculum) for nonmycorrhizal seedlings. On
23 June, two seedlings were transplanted into each ‘Azalea’ pot
(3800 cm

 

3

 

; Kord, Bramalea, Ontario, Canada), containing
the soil–sand mixture. Mycorrhizal seedlings were inoculated
again with 60 ml whole soil inoculum directly around their
roots; nonmycorrhizal seedlings received 60 ml autoclaved
low P field soil directly around their roots with 5 ml spore
washings to obtain comparable nonmycorrhizal microbial
inputs (Koide & Li, 1989). Pots were arranged in a rand-
omized block design across three benches. (Two benches had
three blocks each; one bench had two blocks.) Soil P treat-
ment was established by watering plants once per week with
500 ml of one-third strength Hoagland’s nutrient solution
(Machlis & Torrey, 1956) without P for ‘low P’ plants and
with 1 m

 

M

 

 KH

 

2

 

PO

 

4

 

 for ‘high P’ plants. A preliminary P
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response study had determined the concentration of KH

 

2

 

PO

 

4

 

required for nonmycorrhizal plants to have similar vegetative
growth to mycorrhizal plants (Poulton, 2000). This resulted
in three treatment combinations: nonmycorrhizal, low P
(NMPO); nonmycorrhizal, high P (NMP3); and mycor-
rhizal, low P (MPO). A drip irrigation system supplied plants
with additional water as needed. At 9 wk after transplanting,
400 ml water was supplied to each plant daily (except on the
days when Hoagland’s solution was provided). Thus, there
were 48 pots, with eight replicates per cultivar–treatment
combination. This study was performed at the same time as
the study in Poulton 

 

et al.

 

 (2001b); some plants were used in
both studies.

One randomly selected plant from each pot was removed
at 3 wk after transplanting (leaving one plant per pot). At
5 wk after transplanting, a root sample was taken midway
between the stem and pot edge in each pot with a no. 15 cork
bore. The hole was filled with the autoclaved soil–sand mix-
ture. Roots were rinsed out of the soil samples and initially
stored in formaldehyde–acetic acid–ethanol (FAA) solution.
Then the roots were cleared and stained with trypan
blue to determine level of mycorrhizal infection (NMPO,
NMP3 

 

≈

 

 0%; MPO = 68%) using the modified gridline
intersect technique in Koide & Mooney (1987).

The vegetative response to the three treatments was meas-
ured as leaf area, days until first flower, leaf P concentration,
and final leaf biomass. Starting at 3 wk after transplanting, leaf
area measurements were recorded once per week for 3 wk,
as described in Bryla & Koide (1990b) and Poulton 

 

et al

 

.
(1998). The first plants began to flower 4 wk after transplant-
ing. For each plant, the date on which its first flower opened
was recorded. At 5 wk after transplanting, one fully expanded
leaf was collected from each plant for P analysis (the youngest
leaf greater than 12 cm long for ‘VF36’ and 9 cm in long for
‘VFNT Cherry’). Leaves were dried at 70

 

°

 

C to constant
weight and then ground to obtain subsamples. Weighed sub-
samples were digested in a H

 

2

 

SO

 

4

 

–H

 

2

 

O

 

2

 

 mixture using a
Technicon (Tarrytown, NY, USA) block digester (Bryla &
Koide, 1990a,b). Then the digested subsamples were analysed
for P using the molybdo-phosphate method (Watanabe &
Olsen, 1965). Ground leaf tissue from sunflowers was used
as reference material to check digestion and analytical pro-
cedures with each set of 40 samples. At 18 wk after transplant-
ing, all leaves were harvested from each plant and dried at
70

 

°

 

C to constant weight. Then they were weighed to deter-
mine final leaf biomass.

The overall reproductive response to the three treatments
was measured as total flower production per plant. In addi-
tion, separate measures of the female (total fruit mass per
plant, fruit abortion, fruit P concentration, mean seed
number per fruit and total seed number per plant) and male
function (mean pollen production per flower, total pollen
production per plant and pollen grain size) were evaluated.
Total flower production per plant was determined by counting

the number of flowers produced per month for the remaining
3 months of the study. All open flowers were vibrated twice
per week with a modified electric toothbrush to ensure fruit
production via self-pollination. Vibrating a flower at a high
frequency causes pollen to be released from the anther cone,
saturating the stigmatic surface within the cone. Starting
at 6 wk after transplanting, pollen was collected weekly to deter-
mine mean pollen production per flower. On each plant, all
open flowers were vibrated, and pollen for that plant was
collected in a single gelatin caplet. Pollen samples were dried
at 40

 

°

 

C and stored in 20-ml vials for future analysis. Individual
pollen samples were then weighed on a scale with precision to
0.001 mg. Mean pollen production per flower was calculated
by dividing mass of the pollen sample by the number of
flowers vibrated on that plant. Pollen counts performed on
microscope slides showed a strong correlation (

 

R

 

2

 

 = 0.97,

 

n

 

 = 36) with mass (Poulton, 2000). Total pollen production
per plant was calculated as number of flowers 

 

×

 

 mean
pollen production per flower. Pollen samples were collected
monthly to measure pollen grain size. One pollen load was
transferred on the flat end of a wire to a microscope slide and
was stained with acetocarmine (Kearns & Inouye, 1993). On
each slide, the diameters of the first 20 pollen grains encountered
on a grid were measured with a micrometer. As fruit ripened,
they were harvested and dried at 70

 

°

 

C to constant weight.
Dried fruit were weighed to determine total fruit mass per
plant. Fruit abortion was calculated as ((number of flowers –
 number of mature fruit)/number of flowers) 

 

×

 

 100. The
number of seeds per fruit was recorded from a representat-
ive sample of the fruit (30% of the fruit produced by each
cultivar–treatment combination). Total seed production per
plant was calculated as number of fruit 

 

×

 

 mean seed number
per fruit. Fruit P concentration was determined as previously
described for leaf tissue.

For most vegetative and reproductive traits, fixed effects
analyses of variance (general linear model; Minitab, 1997) were
performed with two factors and their interaction: cultivar
(two levels) and treatment (three levels). Time (three levels)
was also included in the analysis of variance for leaf area. Least
square means were calculated whenever sample size varied
among cultivar–treatment combinations. Bonferroni pairwise
comparisons were used to detect significant differences among
the treatments within a cultivar. In addition, multivariate
analyses of variance (General 

 

MANOVA

 

; Minitab, 1997) were
performed for vegetative traits, measures of the female func-
tion and measures of the male function, in order to detect
overall significant treatment effects. Total flower production
per plant was included in both 

 

MANOVA

 

s for reproductive
traits. Mycorrhizal response was calculated as ((MPO –
NMPO mean)/NMPO mean)  

 

×

 

 100 (Bryla & Koide,
1990b). Similarly, P response was calculated as ((NMP3 –
NMPO mean)/NMPO mean) 

 

×

 

 100. Leaf area (at 5 wk),
total flower production per plant, total seed production
per plant and total pollen production per plant were used to
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evaluate plant response to mycorrhizal infection and high soil
P conditions.

 

Results

 

As expected, cultivar had a significant effect on most
vegetative and reproductive traits throughout this study. In

both cultivars, NMP3 and MPO plants had greater leaf area
than NMPO plants, with these differences among treatments
increasing over time (Table 1, Fig. 1). Treatment also had a
significant effect on days until first flower (Table 2). In the cv.
VF36, NMP3 and MPO plants began to flower significantly
faster than NMPO plants. In the cv. VFNT Cherry, NMP3
plants began to flower significantly faster than NMPO
plants (MPO plants were intermediate). Treatment also had
a significant effect on leaf P concentration and final leaf
biomass (Table 2). In both cultivars, leaves from NMP3
plants had a significantly higher P concentration than leaves
from NMPO plants (MPO plants were intermediate). In
addition, NMP3 plants had greater final leaf biomass than
NMPO and MPO plants. In both cultivars, the relationship
between leaf area and leaf P concentration at week 5 varied
among the treatments, although there was always a positive
correlation (‘VF36’ 

 

R

 

2

 

 = 0.55; ‘VFNT Cherry’ 

 

R

 

2

 

 = 0.66;
Fig. 2). In the multivariate analysis of variance, there was
an overall significant treatment effect for vegetative traits,
especially in ‘VFNT Cherry’ (

 

MANOVA

 

, 

 

F

 

 = 18.88, 

 

P

 

 = 0.001).

Table 1 Analysis of variance of leaf area (measured at weeks 3, 4 and 
5) in ‘VF36’ and ‘VFNT Cherry’

Source df F P

Time 2 184.71 0.001
Cultivar 1 1763.77 0.001
Treatment 2 176.83 0.001
Time × cultivar 2 50.99 0.001
Time × treatment 4 5.87 0.001
Cultivar × treatment 2 19.21 0.001
Time × cultivar × treatment 4 0.48 0.749
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Fig. 1 Leaf area (measured at weeks 3, 4, and 5) in (a) ‘VF36’ and 
(b) ‘VFNT Cherry’. Means (± SE) are given. Solid line, NMPO 
(nonmycorrhizal, low P); large dashes, NMP3 (nonmycorrhizal, high 
P); small dashes, MPO (mycorrhizal, low P).
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Fig. 2 Relationship between leaf area (cm2) and leaf P concentration 
at week 5 in (a) ‘VF36’ and (b) ‘VFNT Cherry’. Circles, NMPO 
(nonmycorrhizal, low P); squares, NMP3 (nonmycorrhizal, high P); 
triangle, MPO (mycorrhizal, low P).
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Treatment had a significant effect on total flower produc-
tion per plant, especially in ‘VFNT Cherry’ (Table 3). In the
‘VF36’, NMP3 and MPO plants produced significantly more
flowers than NMPO plants. In ‘VFNT Cherry’, NMP3
plants produced significantly more flowers than MPO plants,
which in turn produced significantly more flowers than
NMPO plants (i.e. NMP3 > MPO > NMPO). Treatment
also had a significant effect on total fruit mass per plant
(Table 3). In ‘VF36’, NMP3 plants had significantly greater
total fruit mass than NMPO plants (MPO plants were
intermediate). In ‘VFNT Cherry’, NMP3 and MPO plants

had significantly greater total fruit mass than NMPO plants.
Treatment did not have a significant effect on fruit abortion
(Table 3). However, there was a significant treatment effect on
fruit P concentration (Table 3). In both cultivars, fruit from
NMP3 plants had a significantly higher P concentration than
fruit from NMPO and MPO plants. Treatment also had a
significant effect on total seed number per plant, especially in
‘VFNT Cherry’ (Table 3). In ‘VF36’, NMP3 plants produced
significantly more seeds than NMPO plants (MPO plants
were intermediate). In ‘VFNT Cherry’, NMP3 plants pro-
duced significantly more seeds than MPO plants, which in

Table 2 Vegetative traits in ‘VF36’ and ‘VFNT Cherry’. Days until first flower, leaf P concentration (at week 5), and final leaf biomass (g) are 
given as means and SE (in parentheses)

Table 3 Measures of the female function of reproduction in the ‘VF36’ and ‘VFNT Cherry’ cultivars. Total flower production per plant, total fruit 
mass per plant (g), fruit abortion and fruit P concentration are given as means and SE (in parentheses); mean seed number per fruit and total 
seed number per plant are given as least square means and SE (in parentheses)

Cultivar Treatment Days until first flower Leaf P concentration Final leaf biomass

VF36 NMPO 47.1 (2.6)a 0.17 (0.03)a 4.9 (0.8)a
NMP3 37.4 (0.5)b 0.27 (0.02)b 8.2 (0.7)b
MPO 40.9 (0.8)b 0.21 (0.01)ab 5.5 (0.4)a

VFNT Cherry NMPO 37.0 (2.9)a 0.17 (0.02)a 3.0 (0.3)a
NMP3 29.0 (0.6)b 0.31 (0.03)b 3.7 (0.3)b
MPO 34.9 (1.1)ab 0.25 (0.03)ab 2.5 (0.2)a

ANOVA P-values Cultivar 0.001 0.108 0.001
Treatment 0.001 0.001 0.001
Cultivar × treatment 0.489 0.541 0.052

Different letters within a cultivar indicate a significant difference at P = 0.05. NMPO, nonmycorrhizal, low P; NMP3, nonmycorrhizal, high P; 
MPO, mycorrhizal, low P.

Cultivar Treatment Total flower production per plant Total fruit mass per plant Fruit abortion

VF36 NMPO 7.9 (1.5)a 9.1 (1.4)a 75.9 (5.8)a
NMP3 12.8 (1.5)b 18.6 (1.3)b 71.1 (3.3)a
MPO 12.5 (1.7)b 13.6 (1.3)ab 81.0 (4.5)a

VFNT Cherry NMPO 29.0 (3.3)a 5.2 (1.3)a 68.9 (6.8)a
NMP3 61.3 (3.8)c 16.8 (1.2)b 59.8 (1.9)a
MPO 42.3 (3.7)b 13.9 (0.5)b 53.3 (4.8)a

ANOVA P-values Cultivar 0.001 0.078 0.001
Treatment 0.001 0.001 0.320
Cultivar × treatment 0.001 0.249 0.084

Fruit P Mean seed Total seed
concentration number per fruit number per plant

VF36 NMPO 0.22 (0.02)a 89.8 (18.0)a 130.2 (45.0)a
NMP3 0.38 (0.02)b 75.8 (11.6)a 273.1 (35.6)b
MPO 0.25 (0.03)a 89.4 (15.2)a 195.0 (45.0)ab

VFNT Cherry NMPO 0.17 (0.02)a 38.4 (4.8)a 392.6 (110.0)a
NMP3 0.29 (0.01)b 54.3 (2.8)b 1300.9 (102.9)c
MPO 0.22 (0.02)a 48.0 (2.9)ab 879.4 (102.9)b

ANOVA P-values Cultivar 0.001 0.001 0.001
Treatment 0.001 0.805 0.001
Cultivar × treatment 0.212 0.091 0.001

Different letters within a cultivar indicate a significant difference at P = 0.05. NMPO, nonmycorrhizal, low P; NMP3, nonmycorrhizal, high P; 
MPO, mycorrhizal, low P.
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turn produced significantly more seeds than NMPO plants
(i.e. NMP3 > MPO > NMPO). In addition, NMP3 plants
produced significantly more seeds per fruit than NMPO
plants (MPO plants were intermediate) in this cultivar
(Table 3). In the multivariate analysis of variance, there was an
overall significant treatment effect for measures of the female
function, especially in ‘VFNT Cherry’ (

 

MANOVA

 

, 

 

F

 

 = 8.83,

 

P

 

 = 0.001).
Treatment had a significant effect on mean pollen produc-

tion per flower (Table 4). In ‘ VF36’, NMP3 and MPO plants
produced significantly more pollen per flower than NMPO
plants. In ‘VFNT Cherry’, MPO plants produced significantly
more pollen per flower than NMPO plants (NMP3 plants
were intermediate). For total pollen production per plant, dif-
ferences among the treatments were even more significant
(Table 4). In both cultivars, NMP3 and MPO plants pro-
duced significantly more pollen per plant than NMPO plants.
However, treatment did not have a significant effect on pollen
grain size (Table 4). In the multivariate analysis of variance,
there was an overall significant treatment effect for measures
of the male function, especially in ‘VF36’ (

 

MANOVA

 

 

 

F

 

 = 3.02,

 

P

 

 = 0.015).
Mycorrhizal and P responses (%) of selected vegetative and

reproductive traits (Table 5) were calculated in order to com-
pare levels of response across factors (e.g. mycorrhizal infec-
tion vs high soil P conditions, vegetative traits vs reproductive

traits, female vs male, ‘VF36’ vs ‘VFNT Cherry’). In both
cultivars, P responses were higher than mycorrhizal responses
for all vegetative and reproductive traits. All mycorrhizal and
P responses were significant, except for the mycorrhizal
response for total seed production per plant in ‘VF36’. In
general, reproductive responses to mycorrhizal infection and
high soil P conditions were greater than vegetative responses.
In ‘VF36’, mycorrhizal and P responses for total pollen pro-
duction per plant were significantly greater than responses
for leaf area and total seed production per plant (mycorrhizal
response 

 

ANOVA

 

, 

 

F

 

 = 5.26, 

 

P

 

 = 0.016; P response 

 

ANOVA

 

,

 

F

 

 = 5.02, 

 

P

 

 = 0.021). In ‘VFNT Cherry’, there was no
significant difference among mycorrhizal responses (

 

ANOVA

 

,

 

F

 

 = 1.22, 

 

P

 

 = 0.316). However, P responses for total seed pro-
duction per plant and total pollen production per plant were
significantly greater than the P response for leaf area (

 

ANOVA

 

,

 

F

 

 = 7.04, 

 

P

 

 = 0.005).

 

Discussion

 

In addition to the anticipated effects on vegetative growth,
this study clearly demonstrates that mycorrhizal infection and
high soil P conditions also improve the female and male
functions of reproduction. In many species, mycorrhizal
infection enhances P uptake from the soil, thereby improv-
ing vegetative growth (Smith & Read, 1997). In this study,

Table 4 Measures of the male function of reproduction in the VF36 and VFNT Cherry cultivars. Mean pollen production per flower (mg), total 
pollen production per plant (mg), and pollen grain size (microns) are given as least square means and SE (in parenthesies)

Table 5 Mycorrhizal and P responses (%) of selected vegetative and reproductive traits in ‘VF36’ and ‘VFNT Cherry’. Least square means and 
(SE) of responses and P-values from analyses of variance are given

Cultivar Treatment
Mean pollen 
production per flower

Total pollen 
production per plant

Pollen grain 
size

VF36 NMPO 0.132 (0.063)a 1.26 (0.81)a 28.3 (0.4)a
NMP3 0.329 (0.063)b 4.75 (0.89)b 28.3 (0.4)a
MPO 0.284 (0.055)b 3.63 (0.70)b 27.7 (0.4)a

VFNT Cherry NMPO 0.025 (0.009)a 0.86 (0.43)a 25.4 (0.3)a
NMP3 0.039 (0.006)ab 2.41 (0.34)b 25.7 (0.2)a
MPO 0.054 (0.007)b 2.26 (0.36)b 25.8 (0.2)a

ANOVA P-values Cultivar 0.001 0.010 0.001
Treatment 0.022 0.001 0.675
Cultivar × treatment 0.071 0.328 0.283

Different letters within a cultivar indicate a significant difference at P = 0.05. NMPO, nonmycorrhizal, low P; NMP3, nonmycorrhizal, high P; 
MPO, mycorrhizal, low P.

Trait

‘VF36’ 
Mycorrhizal 
response P P response P

‘VFNT Cherry’
Mycorrhizal 
response P P response P

Leaf area (at 5 weeks) 50.5 (4.6) 0.001 55.4 (2.6) 0.001 88.6 (8.0) 0.001 95.3 (8.3) 0.001
Total flower production per plant 58.2 (20.9) 0.013 61.4 (18.9) 0.007 45.7 (12.6) 0.004 111.2 (13.2) 0.001
Total seed production per plant 49.8 (32.9) 0.100 109.8 (31.7) 0.005 123.8 (13.9) 0.001 231.0 (34.0) 0.001
Total pollen production per plant 188.1 (49.7) 0.003 277.0 (107.0) 0.031 162.5 (60.3) 0.018 180.4 (26.5) 0.001
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similar trends in NMP3 and MPO plants and the positive
correlation between leaf area and leaf P concentration across
the treatments suggest that mycorrhizal effects on vegetative
growth (and ultimately reproduction) were largely the result
of improved P acquisition. Similarly, in separate studies with
C. pepo, mycorrhizal infection and high soil P conditions
had similar beneficial effects on the male function (Lau &
Stephenson, 1994; Lau et al., 1995). However, in Cucurbita
foetidissima, low-P + AMF (arbuscular–mycorrhizal fungi)
plants produced significantly more staminate flowers than
low-P and high-P plants (Pendleton, 2000).

In this study, mycorrhizal infection and high soil P condi-
tions increased both leaf area (measured before flowering) and
total flower production per plant. In many species, flower
production tends to increase with plant size ( Jackson & Sweet,
1972; Willson et al., 1979; Lloyd, 1980; Aker, 1982; Lee &
Bazzaz, 1982). Similar mycorrhizal effects on total flower pro-
duction have been reported for other tomato accessions (Bryla
& Koide, 1990a) as well as other species (Schenck & Smith,
1982; Dodd et al., 1983; Koide et al., 1988; Lewis & Koide,
1990; Lu & Koide, 1994; Ganade & Brown, 1997). How-
ever, mycorrhizal effects on flower production independent
of plant size have been observed in other studies. For example,
Pendleton (2000) found that mycorrhizal infection increased
staminate flower production in C. foetidissima with no effect
on plant biomass.

Mycorrhizal infection and high soil P conditions improved
fitness through the female function in this study. These treat-
ments increased total fruit mass per plant by increasing total
flower production per plant. Reproductive output is often
highly correlated with plant size and nutrient status (Harper
& White, 1974; Solbrig, 1981) and total flower production
(Stephenson, 1992). Furthermore, mycorrhizal infection and
high soil P conditions increased total seed production per
plant by increasing fruit production (in both cultivars) and
seed number per fruit (in one cultivar). In other tomato
accessions, mycorrhizal infection also increased fruit and seed
production and increased the percentage of flowers producing
fruit (Bryla & Koide, 1990a). Similar mycorrhizal effects on
fruit and seed production have been observed in several
species (see Smith & Read, 1997).

In this study, mycorrhizal infection and high soil P condi-
tions also improved fitness through the male function. These
treatments increased total pollen production per plant by
increasing both total flower production per plant and
pollen production per flower. In natural populations, siring
success is often positively correlated with flower and pollen
production (Schoen & Steward, 1986; Devlin et al., 1992).
Moreover, pollinator attraction and subsequent pollen dis-
semination tend to increase with the size of the floral display
(Schaffer & Schaffer, 1979; Stephenson, 1979; Willson et al.,
1979; Schemske, 1980a,b; Davis, 1981; Patton & Ford,
1983). Other studies have also found that mycorrhizal infec-
tion and high soil P conditions improve the male function by

increasing both flower and pollen production (Lau &
Stephenson, 1994; Lau et al., 1995; Stephenson et al., 1998;
Poulton et al., 2001b). For example, Pendleton (2000) found
that mycorrhizal infection increased staminate flower produc-
tion, and thus pollen production, in C. foetidissima. However,
Philip et al. (2001) found that mycorrhizal infection increased
pollen production per anther and per flower in Lythrum
salicaria without affecting flower production.

In this study, mycorrhizal infection and high soil P condi-
tions also decreased the number of days until first flower
(related to plant size), as seen in other tomato accessions
(Bryla & Koide, 1990a). In natural populations of outcross-
ing plants, earlier flowering could potentially improve fitness
through both the female and male functions. In species with
indeterminate reproduction, earlier flowering can increase
total flower production by lengthening the reproductive
period. In addition, plants that begin to flower earlier also
begin to develop fruit earlier, possibly pre-empting resources
from neighboring plants. Moreover, the pollen grains
produced by the first flowers in a population have the first
opportunity to fertilize ovules at a time when developing fruit
are most likely to reach maturity.

Although not measured in this study, mycorrhizal infection
and high soil P conditions also increase fitness through the
female and male functions by improving the quality of seeds
and pollen produced, as well as the quantity. During seed and
pollen development, environmental conditions that affect
resource availability to the sporophyte (e.g. soil fertility and
leaf herbivory) can influence the quantity and quality of seeds
(Roach & Wulff, 1987) and pollen produced (Stephenson
et al., 1994; Delph et al., 1997). Several studies have found
that mycorrhizal infection improves seed quality (seed size
and P status), thus enhancing offspring vigor (Lewis & Koide,
1990; Koide & Lu, 1992; Lu & Koide, 1994; Shumway &
Koide, 1994a,b; Heppel et al., 1998). In addition, other
studies have found that mycorrhizal infection and high soil P
conditions improve pollen quality (in vitro pollen tube growth
rates), thus enhancing siring success in both pollen mixture
studies and experimental arrays (Lau & Stephenson, 1994;
Stephenson et al., 1998; Poulton et al., 2001a,b).

The P responses in this study were higher than mycorrhizal
responses for all vegetative and reproductive traits in Table 5.
This result simply indicates that the level of P selected for
NMP3 plants (based on an earlier P response study, Poulton,
2000) may have been too high. In addition, NMP3 plants
received nutrient solution containing additional P through-
out the growing season, while mycorrhizal hyphae were
probably less effective at increasing P uptake in MPO plants
as their roots became pot-bound at the end of the growing
season. This reduction in the effectiveness of mycorrhizal
hyphae occurred during the portion of the growing season
when fruit development was at its highest, thus affecting total
seed production per plant. However, the NMP3 and MPO
treatments were not significantly different for most traits.
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In both cultivars, mycorrhizal and P responses for repro-
ductive traits were generally greater than responses for leaf
area. However, the cultivars differed in their responses for the
female and male functions. In the VF36 cultivar, mycorrhizal
and P responses for total pollen production per plant were
significantly greater than responses for total seed production
per plant. Similarly, Pendleton (2000) found that mycorrhizal
infection greatly increased staminate flower production in
C. foetidissima with no effect on pistillate flower production.
Acquisition of P (via mycorrhizal infection or other means)
may be especially important for pollen grains, which showed
the highest P requirement of all reproductive tissues in
Sidalcea oregana (Ashman & Baker, 1992). For example,
stored phytate in mature pollen grains is hydrolysed into
phosphate and myoinositol, which are used by the pollen tube
for cell wall and membrane synthesis ( Jackson & Linskens,
1982; Dickenson & Lin, 1986). However, mycorrhizal and P
responses of the male and female functions were not signific-
antly different in ‘VFNT Cherry’.

Despite differences in plant morphology, flowers per inflo-
rescence, and fruit size, ‘VF36’ and ‘VFNT Cherry’ showed
similar responses to treatment for many vegetative and repro-
ductive traits measured in this study. Other tomato accessions
have demonstrated significant variation in response to mycor-
rhizal infection (but no negative response, Bryla & Koide,
1990b). In general, cultivated varieties of tomato were more
responsive to mycorrhizal infection than wild accessions,
which may be better adapted to poor soil fertility (Koide et al.,
1988).

The evolutionary significance of mycorrhizal infection lies
in its effects on plant reproduction. Selection for a trait, such
as being mycorrhizal, can occur if that trait positively influ-
ences fitness. As demonstrated in the preceding study, mycor-
rhizal infection, similar to high soil P conditions, can increase
fitness through both the female and male functions. The fact
that most terrestrial angiosperm species are mycorrhizal (Law,
1988) may indicate that mycorrhizal infection does indeed
increase the fitness of host plants in natural populations
(Koide, 1998). Furthermore, nonmycotrophic species have
developed morphological and physiological mechanisms for
increasing P acquisition (e.g. proteoid roots, high root and
root hair density, and acidification of the rhizosphere; Koide,
1998). Thus, the need to acquire P from the soil (by mycor-
rhizal infection or other means) has influenced the evolution
of plant species. Understanding the impact of mycorrhizal
infection on all aspects of plant reproduction, as well as vege-
tative growth, will become increasingly important as research
on the use of mycorrhizas in agriculture, forestry, and land
reclamation continues.
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